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Abstract:

Box-Cox transformation system produces the power
normal (PN) family, whose members include normal
and log-normal distributions. We study the mo-
ments of PN and obtain expressions for its mean
and variance. The quantile functions are discussed.
The conditional distributions are studied and shown
to belong to the PN family. We obtain expres-
sions for the mean, median and modal regressions.
Chevyshev-Hermite polynomials are used to obtain
an expression for the correlation coefficient and to
prove that correlation is smaller in the PN scale than
the original scale. We use the Fréchet bounds to ob-
tain expressions for the lower and upper bounds of
the correlation coefficient.

Key Words: Box-Cox Transformation, Log-
Normal, Uncertainty Analysis.

1. Introduction

When {Xi} are independent and positive random
variables Galton (1879) showed that the limit-
ing distribution of

∏n
i=1 Xi on the log-scale, i.e.,∑n

i=1 log Xi, is normal as n approaches infinity. The
distribution of this product in the original scale is
well approximated with a two-parameter log-normal
distribution. The result is exact when the {Xi}
are log-normal. More generally, one may consider
a power transformation, rather than logarithm, of
an underlying normal process. Consider the Box-
Cox (1964) power transformation: Y = Pλ(X) =
(Xλ − 1)/λ when λ 6= 0 or Y = ln(X) when λ = 0.
Frequently, Y is approximated with a normal distri-
bution with mean µ and variance σ2. After a Box-
Cox transformation, one is often interested in infer-
ence on the original scale; e.g. estimate the mean
(Shumway, Azari and Johnson, 1989; Freeman and
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Modarres, 2002a), requiring a back transformation.
This is often difficult as the mean is a non-linear
function of µ and σ2 (Land, 1974). An equivalent
strategy is to model the data directly in the orig-
inal scale in terms of functions of normal variates.
Box-Cox transformation has been successful in many
applications and the subject of numerous investiga-
tions (Sakia, 1992). Whenever Box-Cox transforma-
tion is effective, one may argue that the observations
in the original scale must be well approximated by
powers of normal variates. It is the purpose of this
article to study the family of distributions obtained
through this system.

The analysis of environmental data frequently
centers on positive random variables such as the con-
centration of pollutants. Such concentrations are
usually right skewed with several extreme observa-
tions at both low and high levels. A parametric
model such as log-normal, gamma, Weibull or In-
verse Gaussian (Haas, 1997; Ott, 1995) is often used
to model the observations. However, we often do
not have adequate knowledge (e.g. sample size) to
specify a distributional form; i.e. a clear fit is not
obtained through goodness of fit tests. Hence, model
uncertainties exist. In such cases transformation to
normality, or equivalently, analysis on the PN scale
is an appealing alternative. One can study model
uncertainties through the transformation parameter
of a PN distribution. Frequently, the log-normal
model is selected based on chemical, biological, or
physical grounds (Ott, 1995) and it has a prominent
role in many application areas (Johnson, Kotz, and
Balakrishnan, 1994).

Much effort has been exerted to research the Box-
Cox transformation. With the exception of the work
of Goto and Inoue (1980), relatively little is known
about the distribution of the variables in the PN
scale. Much of the available results pertain to the
log-normal distribution. In the next section, we dis-
cuss the PN family, its moments and quantile func-
tion. We develop the multivariate PN distribution in
section 3, where we study the conditional distribu-
tions and show that they are also in the PN family.
We also investigate the mean, median and modal re-



gressions of this family. Chevyshev-Hermite polyno-
mials are used in section 4 to derive an expression for
the correlation coefficient and to prove it is smaller
in the PN scale than the original scale. We use the
Fréchet bounds to obtain expressions for the lower
and upper bounds of the correlation coefficient.

2. Power Normal Distribution

Johnson (1949) considers a transformation system
which includes normal, lognormal, sinh−1-normal,
and logit-normal. Johnson (1987) uses the system
for generating variates for statistical simulation and
further develops it to a multivariate system. Here,
we discuss the Box-Cox power transformation sys-
tem and the PN distribution. By applying an inverse
transformation to a normal random variable Y , one
obtains BC(λ) : X = (λY + 1)1/λ for λ 6= 0 and
X = exp(Y ) for λ = 0. The system produces the PN
family of distributions. This family was first noted
in Goto and Inoue (1980), where the authors inves-
tigate some of its properties. We discuss other as-
pects of this family in this article and concentrate on
0 ≤ λ ≤ 1, which includes several well-known trans-
formations such logarithm, square, cube or fourth
roots (see Shumway et al, 1989).

Researchers have generally assumed that there is
a transformation parameter that produces a nor-
mal distribution for all λ. Since the support of X
is positive, Y has a truncated normal distribution
for λ 6= 0. Let Y ∼ TN(µ, σ2,−1/λ) have a trun-
cated normal density function g(Y | µ, σ2,−1/λ) =
1
K

1√
2πσ

exp
{
− 1

2σ2 (Y − µ)2
}

where K = Φ(T ), 1, or
Φ(−T ) when λ > 0, λ = 0 or λ < 0, respectively.
Note that T = (1/(λσ) + 1/κ) where κ = σ/µ is the
coefficient of variation and K is a normalizing con-
stant that corresponds to the area above or below the
point of truncation, −1/λ. Let X ∼ PN(λ, µ, σ2)
denote a PN random variable with pdf, for X > 0,
f(X | λ, µ, σ2) = 1

K
1√
2πσ

Xλ−1 · exp[− 1
2 (pλ(X)−µ

σ )2].
By differentiating the density function, one can
show that the distribution is unimodal in the in-
terval 0 ≤ λ ≤ 1 as κ approaches zero. Let
δ = (1 + λµ)2 + 4σ2λ(λ − 1). The density has a
mode at

Mode(X) =

 [0.5(1 + λµ +
√

δ)]1/λ, λ 6= 0,

exp(µ− σ2), λ = 0.
(1)

The density is right skewed for 0 ≤ λ < 1. For λ >
0, as κ → 0, the standardized point of truncation

T →∞ and the left tail of Y is no longer truncated.

2.1 Moments

One can show that the rth moment in the PN scale
is a non-linear function of the means and variances
in the transformed scale. When λ > 0, we have

E(Xr) =
∫ ∞

−1/λ

(λy + 1)r/λφ

(
y − µ

σ

)
dy

dσ
. (2)

In this section, we obtain several more useful forms
for the moments of a PN distribution. For λ = 0,
note that E(Xr) = E(exp(rY )) = exp(rµ + r2σ2/2)
and for λ > 0, we have Y ∼ TN(µ, σ2,−1/λ). Let
S(y) = (λy + 1)r/λ. One can expand S(y) around
µ to show S(y) =

∑∞
i=0

1
i!S

(i)(µ)(y − µ)i where
S(i)(y) = (λy + 1)r/λ−i

∏i−1
j=1(r − jλ) and obtain

Lemma 1 : Let X ∼ PN(λ, µ, σ2). If Y=(Xλ−1)/λ
and Z = (Y − µ)/σ. One has

E(Xr) =
∞∑

i=0

1
i!

S(i)(y)σiE(Zi), (3)

for λ > 0 and E(Xr) = exp(rµ + r2σ2

2 ) for λ = 0.

Note that Z ∼ TN(0, 1, T ) and that E(Zi) =
φ(T )

1−Φ(T )Hi−1(T ) + R where R is a polynomial of de-
gree i− 2 in Z and Hi−1 is the (i− 1)th Chevyshev-
Hermite Polynomial. When Y is approximated with
a normal distribution; e.g. for small κ, we have
E(y − µ)i = (σii!)/(2i/2(i/2)!) for even i and 0 for
odd i. Therefore,

Lemma 2 : Let X ∼ PN(λ, µ, σ2), λ 6= 0 and Y ∼
N(µ, σ2). Then,

E(Xr) =
∑

Even i≥0

σii!
2i/2(i/2)!

S(i)(y). (4)

Tables 1 and 2 obtain the form of E(X) and V ar(X)
for some 0 ≤ λ ≤ 1. Let δi = (λσ)i(λµ + 1)(m−i).
When m = r/λ is an integer, one can show for λ 6= 0,
that E(Xr) is

∑m
i=0

(
m
i

)
δiE(Zi),∑m

Even i=0

(
m
i

)
δii!/(2i/2(i/2)!)

(5)

where Y ∼ TN(µ, σ2,−1/λ) and Y ∼ N(µ, σ2), re-
spectively. For example, when r = λ, E(Xλ) =
λµ + 1 and V ar(Xλ) = λ2σ2.



2.2 CDF and the Quantile Functions

One can consider median and other quantiles to
avoid difficulties with the mean. CDF and quantile
functions can be used as tools in statistical mod-
eling in a number of applications when interest fo-
cuses particularly on the extreme observations in the
tails of the data (Modarres, Nayak and Gastwirth,
2002). For example, to identify a suitable model,
graphs and exploratory analysis of sample observa-
tions will give an impression of the basic shape of
distribution. Adequacy of fit can be judged from
a plot of sample quantiles against the correspond-
ing model quantiles. Let Z = (pλ(X) − µ)/σ. The
cdf of PN(λ, µ, σ2) is F (X) = 1

K · (Φ(Z)− Φ(−T ))
for λ > 0, and 1

K · Φ(Z) for λ < 0. When λ = 0
or Y ∼ N(µ, σ2) one has F (X) = Φ(Z). For
large T , F (X) = Φ(pλ(X) − µ)/σ). Let V (p) =
1− (1−p)Φ(T ) for 0 < p < 1. The quantile function
of PN(λ, µ, σ2) is given by Qλ(p) =

(λ(σΦ−1(V (p)) + µ) + 1)1/λ, λ > 0,

exp(µ + σΦ−1(p)), λ = 0,

(λ(σΦ−1(p) + µ) + 1)1/λ, λ < 0.

(6)

One can obtain a simultaneous quantile plot for dif-
ferent values of λ. Such a plot reveals that the trans-
formation parameter λ has more effects on the up-
per tail for 0 ≤ λ ≤ 1 and that extreme observations
may have more influence on estimation of λ. The
log-normal quantile function has a longer tail and is
clearly separated from other PN quantiles. This ex-
plains why likelihood-based methods of model selec-
tion perform so well in identifying the lognormal dis-
tribution (Shumway et al., 1989). One may obtain
a weighted least squares estimator for λ by modify-
ing the least squares estimator of λ. Maximum like-
lihood estimation of the quantiles is an attractive
procedure due to the existing form of (6). One can
use the asymptotic normality of MLE’s along with
their invariance property to show asymptotic nor-
mality of Q̂λ(p) using µ̂ and σ̂2, which are MLE’s of
the mean and variance on the transformed scale.

3. Multivariate Power-Normal

Consider the Box-Cox power transformation de-

fined by pλj (Xj) =
X

λj
j
−1

λj
when λj 6= 0 and

pλj
(Xj) = lnXj when λj = 0 for each variable

Xj , j = 1, ..., p, that is non-negative. Let Q =

[p~λ( ~X)−~µ]′Σ−1[p~λ( ~X)−~µ]. The inverse transforma-
tions define a p-variate vector ~X = (X1, X2, ..., Xp)
with a probability distribution f( ~X | ~λ, ~µ, Σ) =

1
K
· 1
(2π)p/2 | Σ |1/2

p∏
j=1

X
λj−1
j · exp(−1

2
Q),

where K depends on Ti = 1/(λiσi) + 1/κi. De-
note the bivariate standard normal pdf and cdf
with φ2(z1, z2) = 1

2π
√

1−ρ2
exp[− 1

2(1−ρ2) (z
2
1 + z2

2 −

2ρz1z2)] and Φ2(z1, z2) =
∫ z1

−∞
∫ z2

−∞ φ2(t1, t2)dt1dt2,
respectively. The random vector (X1, X2) from
PN(~λ, ~µ, Σ) has a pdf f(X1, X2) = 1

K ·
1

σ1σ2
Xλ1−1

1 Xλ2−1
2 φ2(Z1, Z2) for Xi > 0, i= 1, 2,

where ~λ = (λ1, λ2), ~µ = (µ1, µ2), Σ = (σij). Note
that K = Φ2[S(λi)Ti, S(λj)Tj ] for λi 6= 0 and
λj 6= 0, and K = Φ(S(Ti)Ti) for λi 6= 0 and λj = 0
where S(λi) refers to the sign of the transformation,
For the bivariate log-normal distribution, K = 1
when λi = λj = 0.

Assuming that the joint distribution of ~Y =
p~λ( ~X) is approximately normal, the forms for the
covariance of the selected bivariate PN distributions
are given in Table 3. The distribution of (Y1, Y2)
is truncated bivariate normal for λi 6= 0, i=1, 2,
and bivariate normal for (λ1, λ2)=(0,0). As in the
univariate case, (Y1, Y2) are approximately bivariate
normal for small coefficient of variations κ1 and κ2

for ~λ 6= ~0. Most researchers assume K ≈ 1 for practi-
cal purposes (Johnson and Wichern, 2002; Gnanade-
sikan, 1977).

As an aid for model selection, a collection of con-
tours and 3-dimensional plots for several values of
~λ appear in Freeman and Modarres (2002b). These
plots are helpful in the early stages of model selec-
tion. Examination of bivariate contour plots along
with univariate Q-Q plots help to identify a trans-
formation set. The likelihood function can be maxi-
mized over this set to obtain an effective scale on
which to analyze the data. It is interesting to
note that the bivariate contours change forms as the
forms of the margins change and the elliptical shape
of the bivariate contours vanish when the margins
are not normal even though the joint dependence is
through a bivariate normal copula. One can show
that if (y1, y2) has a bivariate normal distribution,
then F (X1, X2) = Φ2(Z1, Z2). The next lemma,
which follows from properties of a multivariate nor-
mal distribution (Anderson, 1984), states that the
conditional distributions derived from joint PN dis-
tributions are also PN.



Lemma 3 : Let ~X be the PN p-variate random vec-
tor such that ~X =

(
~X(1), ~X(2)

)
where ~X(1) and ~X(2)

are q and (p−q)-variate random vectors with param-
eter vectors ~λ(1) and ~λ(2). Suppose that we partition
~µ and Σ similarly.

• The marginal distribution of ~X(1) is
PN(~λ(1), ~µ(1),Σ1).

• The conditional distribution of ~X(2) given
~X(1)=~x(1) is a (p− q)-variate PN(~λ(2), ~µ∗,Σ∗)
with ~µ∗ = ~µ(2) +Σ12Σ−1

11 (p~λ(1)( ~X(1))−~µ(1)) and
Σ∗ = Σ22 − Σ21Σ−1

11 Σ12.

• ~X(1) and ~X(2) are independent when Σ12 = 0.

Note that the conditional means depend non-linearly
and the variances and covariances do not depend
on the values of the fixed variates. For example,
the conditional distribution of X2 given X1 = x1 is
PN(λ2, µ, σ2) where µ = µ2 + ρσ2/σ1(pλ1(x1)−µ1)
and σ2 = σ2

2(1−ρ2). Mostafa and Mahmoud (1964)
study the mean, median and modal regression of the
bivariate log-normal distribution. We extend their
result to the PN distribution in the following lemma.

Lemma 4 : If (X1, X2) has a bivariate PN dis-
tribution, then Median(X2|X1), E(X2|X1), and
Mode(X2|X1) are obtained by evaluating (1), (3)
and (6), respectively, at µ = µ2 + ρσ2/σ1(pλ1(x1)−
µ1) and σ2 = σ2

2(1− ρ2) with λ = λ2.

4. Correlations

Let ρX1,X2 and ρ = ρY1,Y2 denote the coefficient of
correlations in the PN and normal scales, respec-
tively. In this section we assume ~Y ∼ (~µ, Σ) and
show that ρX1,X2 = f(ρ), where the form of the
function f depends on the transformation parame-
ter ~λ as well as ~µ, and Σ. See (Freeman and Modar-
res, 2002b) for a more complete discussion. One can
show

f(ρ) =
∑∞

i=1 b1ib2iρ
ii!√

(
∑∞

i=1 b2
1ii!)(

∑∞
j=1 b2

2jj!)
. (7)

It follows from the form of the joint density of
(X1, X2) and equation (7) that if ρ = 0, then
f(ρ) = 0. Further, ρ is zero when f(ρ) = 0 by
the transformation property of functions of indepen-
dent random variables (Karr, 1993). The following

lemma whose proof appears in the technical report
shows that the coefficient of correlation in the PN
scale cannot be greater than that in the normal scale.

Lemma 5 : Let (X1, X2) be distributed with
PN(~λ, ~µ, Σ) with ~µ = (µ1, µ2), and covariance Σ.
Let f(ρ) be the correlation of coefficient of X1 and
X2. Then, | f(ρ) |≤| ρ | .

For the bivariate log-normal distribution this result
is given without proof in Mostafa and Mahmoud
(1964). Finally, note that Pλ(X) are monotone
transformations and the rank measures of correla-
tion remain the same on both scales.

4.1 Extreme Correlations

Even though the minimum and maximum correla-
tion for ~λ = (0, 0) and ~λ = (1, 1) are -1 and 1,
it may not be the case for other transformations.
Specific forms of extreme correlations of selected
(λ1, λ2) are obtained and appear in Table 3. It is
tedious to determine the mathematical forms of ex-
treme correlations. One can, however, use the fol-
lowing computational scheme to calculate them nu-
merically. Let Π be the set of all cdf’s F (X1, X2) on
R2 having marginal cdf’s Fi(Xi), i = 1, 2, with fi-
nite variances. Fréchet’s bounds (Fréchet, 1951) pro-
vide H0(X1, X2) ≤ F (X1, X2) ≤ H1(X1, X2) where
H0(X1, X2) = Max(0, F1(X1) + F2(X2) − 1)) and
H1(X1, X2) = Min(F1(X1), F2(X2)) belong to Π.

To show that the correlations under H0 and
H1 are the minimum and maximum, respec-
tively, note that f(ρ) = 1

σ1σ2
(
∫∞
0

∫∞
0

F (x1, x2) −
F1(x1)F2(x2)dx1dx2) (Lehmann, 1966). Let ρ0 and
ρ1 be the coefficient of correlation under H0 and H1.
It follows that ρ0 ≤ f(ρ) ≤ ρ1. Let Qj be the quan-
tile function of Xj for j = 1, 2 and u be a uniform
random variable in the intervel (0, 1). One can show
(See Whitt, 1976) that (Q1(u), Q2(1 − u)) has cdf
H0(X1, X2) and (Q1(u), Q2(u)) has cdf H1(X1, X2).
It follows that Corr[(Q1(u), Q2(1 − u))] ≤ f(ρ) ≤
Corr(Q1(u), Q2(u)).

To obtain the numerical values for the minimum
and maximum correlations of PN(~λ, ~µ, Σ), we gen-
erate a vector of independent uniform random vari-
ables ~un; then, the maximum and minimum cor-
relations for (λ1 > 0, λ2 > 0) are computed from
fmin(ρ) = Corr(Q1(u), Q2(1 − u)) and fmax(ρ) =
Corr(Q1(u), Q2(u)) where the quantile function is



given by (6). Technical report contains a table of
the averages of 100 minimum and maximum correla-
tions computed based on n = 100, 000, ~µ=(4,4), and
σ2

1 = σ2
2 = 1 for each selected ~λ.
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[4] Fréchet, M. (1951). Sur Les Tableaux de
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Table 1: Means of Power-Normal Distribution

λ E(X)
0 exp(µ + 1

2σ2

1
4

1
4µ + 1)4 + 3

8σ2( 1
4µ + 1)2 + 3

256σ4

1
3

(
1
3µ + 1

)3 + 1
3σ2

(
1
3µ + 1

)
1
2

1
2µ + 1)2 + 1

4σ2

1 µ + 1

Table 2: Variances of Power-Normal Distribution

λ Var(X)
0 exp(2µ + σ2)(exp(σ2)− 1)
1
4

8
2048σ8 + ( 1

4µ + 1)2σ2( 3
32σ4 + 21

32σ2
(

1
4µ + 1

)2 +
(

1
4µ + 1

)4)
1
3

5
243σ6 + 4

9σ4
(

1
3µ + 1

)2 + σ2
(

1
3µ + 1

)4

1
2

1
8σ4 + σ2

(
1
2µ + 1

)2

1 σ2

Table 3: Covariances of Bivariate Power-Normal
Distribution

(λ1, λ2) Cov(X1, X2)
(0, 0) exp(µ1 + µ2 + 1

2σ2
1 + 1

2σ2
2)(exp(ρσ1σ2)− 1)

(0,1/2) ρσ1σ2 exp(µ1 + 1
2σ2

1)( 1
4ρσ1σ2 + 1

2µ2 + 1)
(0,1) ρσ1σ2 exp(µ1 + 1

2σ2
1)

(1/2,1/2) 1
8 (ρσ1σ2)2 + ρσ1σ2

1
2 ( 1

2µ1µ2 + µ1µ2 + 2)
(1/2,1) ρσ1σ2( 1

2µ1 + 1)
(1,1) ρσ1σ2
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